If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+41w=0
a = 1; b = 41; c = 0;
Δ = b2-4ac
Δ = 412-4·1·0
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-41}{2*1}=\frac{-82}{2} =-41 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+41}{2*1}=\frac{0}{2} =0 $
| 2x-8=2(x-1)+11 | | 14x-26=16-38 | | 6(4x−6)−8x=6(x−6) | | q^2+11q-12=0 | | 9x-11+57+80=180 | | 1.666667x+x=64 | | 5x-15+30=90 | | 1/4(x-8)+1/2=2/3x+3 | | (5/3x)+x=64 | | 7=4/5d | | 8(c-16)=-120 | | 3(3x-4)={1}{4}(32x+56) | | 2n-4(n-2)=n-7 | | 2(19)x=2/81 | | 2(19)x=281 | | 0.25(x-8)+0.5x=0.666x+3 | | 3700+31x=4228+42x | | 2y+19+115=180 | | z/3+5=-80 | | 4(x)-3=17 | | z/3+5=80 | | 31/4 =1/2 +w | | 50+0.50x=0.70x | | 58,665+9.50x=17,967+20x | | 2x-13+2x-4=90 | | 2.15d+3.11=11.72 | | 2x-13+2x-4=180 | | (a/2)-1.5=0.75 | | 8(3x−2)=80 | | 8/x-5=x-9/21 | | 1b+1=2b-1 | | 2(4+b)=-12 |